M1. (a) Nucleus splitting into two fragments and releasing two or three neutrons
(at least one) fission neutron shown to be absorbed by additional large nucleus and causing fission
two or three additional neutrons released from fission reaction

This diagram would gain all 3 marks:

(b) lowering the control rods increases the number of neutrons absorbed accept converse description
(so) energy released decreases
allow changing the position of the control rods affects the number of neutrons absorbed for 1 mark
(c) rate of increase between 240 and 276 (MW / min)
allow 1 mark for attempt to calculate gradient of line at 10 minutes

M2. (a) (i) beta and gamma both answers required accept correct symbols
(ii) alpha and beta
both answers required accept correct symbols
(iii) gamma
accept correct symbol
(b) nothing (you do to a radioactive substance / source) changes the count rate / activity / rate of decay / radiation (emitted)
accept it $=$ radiation emitted
or (reducing) the temperature does not change the activity / count rate / rate of decay / radiation (emitted)
(c) (i) has one more neutron correct answer only
(ii) 14 days
no tolerance
allow 1 mark for showing a correct method on the graph
(iii) any two from:

- beta particles / radiation can be detected externally
- beta particles / radiation can pass out of / through the plant
- long half-life gives time for phosphorus to move through

Page 3
the plant / be detected / get results

- phosphorus-32 is chemically identical to phosphorus-31
- phosphorus-32 is used in the same way by a plant as phosphorus-31

M3. (a) (i) 3 fewer neutrons
accept fewer neutrons accept different number of neutrons do not accept different number of electrons
(ii) electron from the nucleus both points needed
(iii) 32 (days)
allow 1 mark for clearly obtaining 4 half-lives
(iv) has a much longer half-life accept converse answers in terms of iodine-131 accept it has not reached one half-life yet
little decay happened / still in the atmosphere
accept it is still decaying
(b) any two from:
marks are for reasons

- some children developed TC before 1986
- some children (after 1986) that developed TC did not live in highly contaminated areas
- the (large) increase can (only) be explained by (a large increase in) radiation as caused by Chernobyl
- all areas would be contaminated (and raise the risk of TC)
- no evidence (of effect) of other variables
(c) People not exposed (to the radiation but who were otherwise similar)
(d) any two from:
answers should be in terms of nuclear power and not why we should not use other fuels
- produce no pollutant / harmful gases
accept named gas or greenhouse gases do not accept no pollution
- produces a lot of energy for a small mass (of fuel) or is a concentrated energy source
accept amount for mass
accept high energy density
- it is reliable or
it can generate all of the time
- produces only a small volume of (solid) waste
accept amount for volume

M4. (a) cobalt-(60)
gamma (radiation) will pass through food / packaging this can score if technetium chosen
long half-life so level of radiation (fairly) constant for (a number) of years this can score if strontium / caesium is chosen accept long half-life so source does not need frequent replacement
accept answers in terms of why alpha and beta cannot be used
gamma kills bacteria is insufficient
(ii) not biased / influenced (by government views)
(iii) any two from:

- data refers only to (cooked) chicken
- data may not generalise to other foods
- the content of some vitamins increases when food / chicken is irradiated
- no vitamins are (completely) destroyed
- (only) two vitamins decrease (but not significantly) accept irradiated chicken / food contains a higher level of vitamins
marks are for the explanation only
(iv) so can choose to eat / not eat that (particular) food accept irradiated food may cause health problems (for some people) accept people may have ethical issues(over eating irradiated food)
(c) (i) electron from nucleus / neutron
both parts required
(ii) 90 years
allow 1 mark for showing 3 half-lives

M5. (a) (i) 18
(ii) the count rate for the source
(iii) the alpha radiation would not cover such a distance
(iv) plots correct to within $1 / 2$ small square allow 1 mark for 4 correct points plotted correct curve through points as judged by eye
(v) two attempts at finding 'half-distance' using the table

20 to $10 \mathrm{cpm} \mathrm{d}=0.4 \mathrm{~m}$
125 to $56 \mathrm{cpm} \mathrm{d}=0.2 \mathrm{~m}$
31 to $14 \mathrm{cpm} d=0.4 \mathrm{~m}$
allow 1 mark for one attempted comparison
obeyed or not obeyed
dependent on previous two marks
(b) (i) there is no effect on the count rate in experiment 1 because the field is parallel or beta particles are not deflected or there is no force
count rate is reduced in experiment 2 because field is perpendicular or beta particles are deflected or there is a force
(ii) only background radiation (as beta do not travel as far)
slightly different values show the random nature of radioactive decay

M6. (a) (i) any one from:

- nuclear power (stations)
accept nuclear waste accept coal power stations
- nuclear weapons (testing)
accept nuclear bombs / fallout
- nuclear accidents
accept named accident, eg Chernobyl or Fukushima
accept named medical procedure which involves a radioactive source accept radiotherapy accept X-rays accept specific industrial examples that involve a radioactive source
nuclear activity / radiation is insufficient smoke detectors is insufficient
(ii) (radioactive decay) is a random process accept an answer in terms of background / radiation varies (from one point in time to another)
(b) any one from:
- (maybe) other factors involved
accept a named 'sensible' factor, eg smoking
- evidence may not be valid
accept not enough data
- may not have (a complete) understanding of the process (involved)
(c) (i) 2
(ii) 218
correct order only

